Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews.
نویسندگان
چکیده
Signals from the vestibular system, area postrema, and forebrain elicit nausea and vomiting, but gastrointestinal (GI) vagal afferent input arguably plays the most prominent role in defense against food poisoning. It is difficult to determine the contribution of GI vagal afferent input on emesis because various agents (e.g., chemotherapy) often act on multiple sensory pathways. Intragastric copper sulfate (CuSO4) potentially provides a specific vagal emetic stimulus, but its actions are not well defined in musk shrews (Suncus murinus), a primary small animal model used to study emesis. The aims of the current study were 1) to investigate the effects of subdiaphragmatic vagotomy on CuSO4-induced emesis and 2) to conduct preliminary transneuronal tracing of the GI-brain pathways in musk shrews. Vagotomy failed to inhibit the number of emetic episodes produced by optimal emetic doses of CuSO4 (60 and 120 mg/kg ig), but the effects of lower doses were dependent on an intact vagus (20 and 40 mg/kg). Vagotomy also failed to affect emesis produced by motion (1 Hz, 10 min) or nicotine administration (5 mg/kg sc). Anterograde transport of the H129 strain of herpes simplex virus-1 from the ventral stomach wall identified the following brain regions as receiving inputs from vagal afferents: the nucleus of the solitary tract, area postrema, and lateral parabrachial nucleus. These data indicate that the contribution of vagal pathways to intragastric CuSO4-induced emesis is dose dependent in musk shrews. Furthermore, the current neural tracing data suggest brain stem anatomical circuits that are activated by GI signaling in the musk shrew.
منابع مشابه
Food restriction, refeeding, and gastric fill fail to affect emesis in musk shrews.
Nausea and emesis are common side effects of gastrointestinal disease. Reports indicate that ghrelin and endocannabinoids, agents that stimulate appetite, also reduce emesis evoked by chemotherapy treatment, which suggests that stimulation of feeding inhibits the emetic system. In the following study we conducted a more direct test of this hypothesis by determining the impact of manipulating th...
متن کاملProfile of Antiemetic Activity of Netupitant Alone or in Combination with Palonosetron and Dexamethasone in Ferrets and Suncus murinus (House Musk Shrew)
BACKGROUND AND AIMS Chemotherapy-induced acute and delayed emesis involves the activation of multiple pathways, with 5-hydroxytryptamine (5-HT; serotonin) playing a major role in the initial response. Substance P tachykinin NK1 receptor antagonists can reduce emesis induced by disparate emetic challenges and therefore have a clinical utility as broad inhibitory anti-emetic drugs. In the present...
متن کاملImmunization with a nontoxic mutant of staphylococcal enterotoxin A, SEAD227A, protects against enterotoxin-induced emesis in house musk shrews.
BACKGROUND Staphylococcal enterotoxins (SEs) are the most common cause of foodborne diseases and toxic shock throughout the world. However, no vaccine that prevents emesis induced by SEs has been described. METHODS A nontoxic mutant of SEA, SEAD227A, was constructed by site-directed mutagenesis and was purified by means of the Escherichia coli expression system. House musk shrews, a small eme...
متن کاملWhy Can’t Rodents Vomit? A Comparative Behavioral, Anatomical, and Physiological Study
The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representativ...
متن کاملComputerized detection and analysis of cancer chemotherapy-induced emesis in a small animal model, musk shrew.
Vomiting is a common side effect of cancer chemotherapy and many drug treatments and diseases. In animal studies, the measurement of vomiting usually requires direct observation, which is time consuming and often lacks temporal precision. Musk shrews have been used to study the neurobiology of emesis and have a rapid emetic episode (∼1 s for a sequence of retching and expulsion). The aim of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 306 5 شماره
صفحات -
تاریخ انتشار 2014